

Qualification Test Report

45° Fiber Array

Prepared by: Fang Huang

Approved by: <u>Jinhe Qiu</u>

Released Date: <u>2018-5-29</u>

I. Introduction

This report presents the qualification test results of MESU 45° fiber Array products. The products chosen to performance the qualification testing are F4/45D fiber Array (G657A1 fiber) by following requirement of Telcordia GR1221-CORE.

As the similarity between the manufacturing process and material used for other type of Fiber Array type, the result of this qualification should also be applicable to other similar Fiber Array.

II. Product Description and Specification

Optical Parameter: IL<0.8dB@1310nm for each channel.

III. Telcordia GR-1221 Qualification Test

1. Sample flow chart and number of allowed failures: The following table shows the qualification flow chart used to evaluate planar splitters according to Telcordia GR-1221. The sample sizes have been divided in 2 groups to perform the tests in parallel.

Group	Sample	Test Condition	Number of
	Number		Allowed Failures
A	11	Damp Heat	0
В	11	Temperature Cycling	0

2. Optical parameters: The following optical performances will be tested and monitored during the tests: Insertion Loss.

3. Pass/ Fail criteria

Parameter	Pass/Fail Criteria
Insertion Loss change (ΔΙL)	≤ 0.5dB
Physical Damage	None

4. Telcordia GR-1221 qualification summary

Heading	Test	Condition	Reference
	Damp Heat	85°C/85% RH, 2000 hours	GR1221, section 6.2.5
Endurance	Temperature Cycling	40°C to 85°C, 100 cycles for pass/fail, 500 cycles for info.	GR1221, section 6.2.7

5. Test definitions

• **Damp Heat:** The high temperature storage (damp heat) test is based on the procedure stated in MIL-STD-883 Method 103 or EIA/TIA-455-5A, test type 1, with the following conditions:

Temperature: 85° C ($\pm 2^{\circ}$ C) Humidity: 85% ($\pm 5\%$) RH

• Temperature cycling: The temperature cycling test is based on the procedures stated in MIL-STD-883, Method 1010, with the following conditions or EIA/TIA-455-3A, with the following conditions:

Temperature: -40°C to 85°C (±2°C) for RT/UNC

Dwell Time at Extremes: ≥15 minutes Temperature Ramp Rate: ≥1°C per minute.

Number of Cycles: 100 pass/fail, 500 for information for RT/UNC

6. Test results

1). Damp/heat testing results: 85% RH and 85°C and 11 samples

中山市美速光电技术有限公司

Zhongshan Mesu Technology Co., Ltd

	Dam	p/Heat Testi	ng Result Summ	nary	
		Initial	168 Hrs	500 Hrs	1000 Hrs
FA No.	Channel	IL	ΔIL	ΔIL	ΔIL
		dB	dB	dB	dB
	ch1	0.55	0.11	0.15	0.17
FA4DH01	ch2	0.57	0.08	0.13	0.18
LV4DH01	ch3	0.36	0.07	0.1	0.15
	ch4	0.44	0.1	0.12	0.13
	ch1	0.47	0.12	0.17	0.21
FA4DH02	ch2	0.53	0.05	0.09	0.16
r Addito2	ch3	0.55	0.11	0.18	0.25
	ch4	0.58	0.11	0.13	0.18
	ch1	0.38	0.06	0.12	0.14
FA4DH03	ch2	0.42	0.08	0.11	0.15
L VADIIO9	ch3	0.46	0.1	0.17	0.24
	ch4	0.52	0.13	0.19	0.19
	ch1	0.46	0.09	0.14	0.19
FA4DH04	ch2	0.42	0.08	0.12	0.18
PODUPAT	ch3	0.5	0.12	0.1	0.16
	ch4	0.45	0.11	0.12	0.14
	ch1	0.39	0.11	0.19	0.22
FA4DH05	ch2	0.43	0.15	0.16	0.19
COUNTRY	ch3	0.48	0.1	0.16	0.21
	ch4	0.46	0.12	0.15	0.22
	ch1	0.42	0.09	0.13	0.23
FA4DH06	ch2	0.47	0.07	0.12	0.17
1. WADDOO	ch3	0.46	0.11	0.15	0.18
	ch4	0.37	0.06	0.09	0.11
	ch1	0.51	0.15	0.2	0.21
FA4DH07	ch2	0.43	0.12	0.18	0.2
LVADDO	ch3	0.45	0.13	0.17	0.23
	ch4	0.38	0.09	0.14	0.18
	ch1	0.49	0.07	0.12	0.14
FA4DH08	ch2	0.42	0.06	0.09	0.13
LV4DIIO0	ch3	0.46	0.1	0.12	0.19
	ch4	0.37	0.09	0.14	0.17
	ch1	0.47	0.12	0.21	0.17
FA4DH09	ch2	0.53	0.15	0.13	0.16
I ANDIOJ	ch3	0.46	0.09	0.16	0.19
	ch4	0.44	0.12	0.15	0.21
	ch1	0.37	0.06	0.09	0.11
FA4DH10	ch2	0.43	0.05	0.09	0.16
LVADIIIO	ch3	0.48	0.08	0.1	0.15
	ch4	0.43	0.07	0.12	0.18
	ch1	0.48	0.08	0.11	0.14
FA4DH11	ch2	0.46	0.09	0.11	0.16
T MADULT	ch3	0.41	0.1	0.14	0.19
	ch4	0.39	0.12	0.16	0.15

中山市美速光电技术有限公司

Zhongshan Mesu Technology Co., Ltd

5). Temperature cycling testing results:

11 samples of Fiber Array temperature cycling from -40°C to +85°C testing results:

Temperature Cycle Testing Result Summary				
		Initial	100 cycles	500 cycles
FA No.	Channel	IL	ΔIL	ΔIL
		d₿	dB	dB
	ch1	0.52	0.12	0.15
EA ATOM	ch2	0.45	0.09	0.13
FA4TC01	ch3	0.43	0.08	0.11
	ch4	0.41	0.11	0.12
	ch1	0.43	0.1	0.17
E 4 4 T C 0 C	ch2	0.47	0.11	0.12
FA4TC02	ch3	0.49	0.09	0.17
	ch4	0.52	0.08	0.13
	ch1	0.41	0.08	0.13
E ATOO	ch2	0.38	0.08	0.16
FA4TC03	ch3	0.46	0.1	0.17
	ch4	0.42	0.09	0.15
	ch1	0.38	0.1	0.15
EASTCO4	ch2	0.35	0.11	0.18
FA4TC04	ch3	0.42	0.09	0.14
	ch4	0.41	0.08	0.1
	ch1	0.46	0.12	0.12
EL ATONE	ch2	0.37	0.11	0.15
FA4TC05	ch3	0.39	0.13	0.16
	ch4	0.43	0.14	0.14
	ch1	0.41	0.11	0.13
DI ATTOOR	ch2	0.46	0.14	0.17
FA4TC06	ch3	0.47	0.13	0.16
	ch4	0.43	0.13	0.18
	ch1	0.48	0.09	0.14
EL ATOM	ch2	0.46	0.12	0.18
FA4TC07	ch3	0.45	0.11	0.17
	ch4	0.49	0.13	0.15
	ch1	0.51	0.12	0.13
EA ATONO	ch2	0.47	0.13	0.15
FA4TC08	ch3	0.49	0.11	0.1
	ch4	0.42	0.12	0.09
	ch1	0.41	0.12	0.15
EL ATOSS	ch2	0.36	0.09	0.11
FA4TC09	ch3	0.38	0.09	0.17
	ch4	0.39	0.08	0.12
	ch1	0.32	0.08	0.13
THE AMERICA	ch2	0.37	0.09	0.12
FA4TC10	ch3	0.35	0.11	0.14
	ch4	0.33	0.09	0.18
	ch1	0.43	0.09	0.11
1 19 <u>0</u> 10 19 <u>03 (1</u> 004)	ch2	0.38	0.11	0.13
FA4TC11	ch3	0.36	0.09	0.15
	ch4	0.39	0.1	0.13

IV. Test Conclusions

- 1.45° fiber Array products can meet the Telcordia standards and the products specification.
- 2. Visual inspection shows no physical abnormal after the test.

V. References

GR-1221-CORE, "Generic Reliability Assurance Requirements for Passive Optical Components", Issue 2, January 1999.